organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-5-(2-Chlorophenyl)-7-ethyl-2-oxo-2,3-dihydro-1*H*-thieno[2,3-e][1,4]diazepin-4-ium 2,4,6-trinitrophenolate

Richard Betz,^a* Thomas Gerber,^a Eric Hosten,^a Alaloor S. Dayananda,^b Hemmige S. Yathirajan^b and A. R. Ramesha^c

^aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, ^bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and ^cR. L. Fine Chem., Bangalore 560 064, India

Correspondence e-mail: richard.betz@webmail.co.za

Received 10 January 2012; accepted 20 January 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 16.3.

In the title molecular salt, $C_{15}H_{14}ClN_2OS^+ \cdot C_6H_2N_3O_7^-$, protonation occurred on the double-bonded N atom. One of the nitro groups shows slight disorder over two orientations, with an occupancy ratio of 0.91:0.09. In the crystal, classical N-H···O hydrogen bonds, as well as C-H···O contacts connect the components into a three-dimensional network. The seven-membered ring adopts a boat-like conformation. The least-squares plane defined by its non-H atoms encloses an angle of 38.99 (6)° with the benzene ring bonded to it.

Related literature

For pharmaceutical background to benzodiazepines, see: Robol *et al.* (1996); Evans *et al.* (2001). For related structures, see: Scammells *et al.* (2001); Jasinski *et al.* (2010). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{15}H_{14}CIN_2OS^+ \cdot C_6H_2N_3O_7^ M_r = 533.90$ Monoclinic, $P_{2_1/c}$ a = 10.5704 (2) Å b = 20.0667 (5) Å c = 11.3741 (2) Å $\beta = 110.666$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008). $T_{\rm min} = 0.807, T_{\rm max} = 0.892$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.081$ S = 1.055607 reflections 343 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H71···O31	0.870 (19)	1.865 (19)	2.6847 (13)	156.3 (17)
$N2 - H72 \cdot \cdot \cdot O31^{i}$	0.836 (18)	2.047 (18)	2.8331 (13)	156.4 (16)
$N2 - H72 \cdot \cdot \cdot O362^{i}$	0.836 (18)	2.400 (17)	2.9495 (16)	123.9 (14)
$C2 - H2A \cdots O321$	0.99	2.49	3.2465 (16)	133
$C2 - H2B \cdots O342^{ii}$	0.99	2.48	3.2505 (17)	134
C23−H23···O321 ⁱⁱⁱ	0.95	2.51	3.4193 (18)	161

Symmetry codes: (i) -x + 1, -y, -z; (ii) x - 1, y, z - 1; (iii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

ASD thanks the University of Mysore for research facilities. HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2384).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
 Evans, B., Pipe, A., Clarke, L. & Banks, M. (2001). Bioorg. Med. Chem. Lett. 11, 1297–1300.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, 01187-01188.

 $V = 2257.35 (8) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.32 \text{ mm}^{-1}$ T = 200 K 0.59 \times 0.49 \times 0.36 mm

21254 measured reflections 5607 independent reflections 5073 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.013$

H atoms treated by a mixture of

refinement

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

independent and constrained

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Robol, J. A., Cimarusti, M. P., Simpkins, L. M., Brown, B., Ryono, D. E., Bird,
 M. M., Asad, T. R., Schaeffer, N. C. & Trippodo, N. C. (1996). *J. Med. Chem.* 39, 494–502.
- Scammells, P. J., Tranberg, C. E. & Tiekink, E. R. T. (2001). Acta Cryst. E57, 0344–0345.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, o516-o517 [doi:10.1107/S1600536812002607]

(*E*)-5-(2-Chlorophenyl)-7-ethyl-2-oxo-2,3-dihydro-1*H*-thieno[2,3-*e*][1,4]diazepin-4-ium 2,4,6-trinitrophenolate

R. Betz, T. Gerber, E. Hosten, A. S. Dayananda, H. S. Yathirajan and A. R. Ramesha

Comment

Five-atom heterocyclic fused benzodiazepine ring systems occupy a prominent place among drugs for treatment of central nervous system (*CNS*) disorders (Robol *et al.*, 1996; Evans *et al.*, 2001). The crystal structures of 6,7-dimethyl-5-phenyl-1*H*-thieno[2,3-*e*][1,4]diazepin-2(3*H*) -one (Scammells *et al.*, 2001) and 5,7-dimethyl-2,3-dihydro-1*H*-1,4- diazepin-4-ium picrate (Jasinski *et al.*, 2010) have been reported. In view of the importance of heterocyclic fused diazepine ring systems, the paper reports the crystal structure of the title compound.

The title compound is the picrate salt of (*E*)-5-(2-chlorophenyl)-7- ethyl-1*H*-thieno[2,3-*e*][1,4]diazepin-2(3*H*)-one. Due to involvement of the free electron pair on the – formally – sp^3 hybridized nitrogen atom in amide-type resonance, protonation occurred on the double-bonded nitrogen atom. According to a puckering analysis (Cremer & Pople, 1975), the seven-membered heterocycle adopts a boat-like conformation (*Q*₂: 0.7754 (12) Å, *Q*₃: 0.2281 (12) Å, φ_2 : 262.69 (9)°, φ_3 : 207.4 (3)°) (Fig. 1).

In the crystal structure, classical hydrogen bonds of the N–H···O type as well as C–H···O contacts whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the corresponding atoms are apparent. While the classical hydrogen bonds are supported by both nitrogen-bound H atoms and have the phenolic as well as nitrogen-bound oxygen atoms as acceptor, the C–H···O contacts exclusively apply the latter type of oxygen atoms as acceptors. The C–H···O contacts stem from both hydrogen atoms of the intracyclic methylene group as well as the hydrogen atom in *ortho* position to the chlorine atom. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for the classical hydrogen bonds is *DDD* on the unitary level (due to bifurcation of one of the classical hydrogen bonds). The same descriptor is necessary to describe the C–H···O contacts on the identical level. Metrical information about the contacts is summarized in Table 1. In total, the entities of the title compound are connected to a three-dimensional network. The shortest intercentroid distance between two aromatic systems was measured at 4.8063 (7) Å and is apparent between the thiophene moieties of two neighbouring molecules. (Fig. 2).

Experimental

(*E*)-5-(2-Chlorophenyl)-7-ethyl-1*H*-thieno[2,3-*e*] [1,4]diazepin-2(3*H*)-one was obtained as a gift sample from *R*. *L*. Fine Chem., Bengaluru, India. (*E*)-5-(2-Chlorophenyl)-7-ethyl-1*H*-thieno [2,3-*e*][1,4]diazepin-2(3*H*)-one (3.04 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (2.29 g, 0.01 mol) was also dissolved in 10 ml of methanol. Both solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for a day at room temperature. The salt formed was filtered and dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from a mixture (*v*:*v* = 1:1) of DMSO and ethanol by slow evaporation (m.p: 518 K).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl group were allowed to rotate with a fixed angle around the C—C bond (C—H 0.98 Å) to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with U(H) set to $1.5U_{eq}(C)$. Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only the major component of the disordered nitro group is depicted.

Fig. 2. Intermolecular contacts, viewed approximately along [-1 - 1 - 1]. For clarity, only selected intermolecular contacts are depicted. Blue dashed lines show classical hydrogen bonds of the N–H…O type, green dashed lines C–H…O contacts. Symmetry operator: ⁱ -*x* + 1, -*y*, -*z*. Only the major component of the disordered nitro group is depicted.

(E)-5-(2-Chlorophenyl)-7-ethyl-2-oxo-2, 3-dihydro-1 H-thieno[2,3-e][1,4] diazepin-4-ium 2, 4, 6-trinitrophenolate and the set of the se

Crystal data

$C_{15}H_{14}CIN_2OS^+ C_6H_2N_3O_7^-$	F(000) = 1096
$M_r = 533.90$	$D_{\rm x} = 1.571 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Melting point: 518 K
Hall symbol: -P 2ybc	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.5704 (2) Å	Cell parameters from 9909 reflections
b = 20.0667 (5) Å	$\theta = 2.9 - 28.3^{\circ}$
c = 11.3741 (2) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\beta = 110.666 \ (1)^{\circ}$	T = 200 K
V = 2257.35 (8) Å ³	Block, brown
<i>Z</i> = 4	$0.59\times0.49\times0.36~mm$
Data collection	
Bruker APEXII CCD	5607 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	5073 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.013$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008).	$h = -13 \rightarrow 14$
$T_{\min} = 0.807, \ T_{\max} = 0.892$	$k = -26 \rightarrow 26$
21254 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.081$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0349P)^{2} + 1.1718P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5607 reflections	$(\Delta/\sigma)_{max} < 0.001$
343 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C11	0.57956 (3)	0.230591 (16)	0.27567 (3)	0.03062 (8)	
S1	0.08122 (3)	0.038903 (15)	-0.15866 (3)	0.02327 (8)	
01	0.53537 (10)	0.04170 (5)	-0.16774 (10)	0.0361 (2)	
O31	0.75141 (9)	0.09665 (4)	0.21426 (8)	0.02763 (19)	
O321	0.75835 (10)	0.21026 (6)	0.09075 (9)	0.0377 (2)	
O322	0.96274 (13)	0.23796 (7)	0.11380 (11)	0.0495 (3)	
O341	1.27262 (12)	0.24856 (6)	0.54001 (12)	0.0505 (3)	
O342	1.25204 (13)	0.17919 (7)	0.67751 (12)	0.0607 (4)	
N36	0.84539 (12)	0.04459 (6)	0.46335 (11)	0.0328 (3)	
O361	0.8483 (2)	0.04566 (12)	0.57264 (12)	0.0591 (7)	0.913 (5)
O362	0.79227 (19)	-0.00036 (7)	0.39045 (12)	0.0432 (5)	0.913 (5)
O363	0.8925 (12)	0.0218 (6)	0.5586 (12)	0.023 (3)*	0.087 (5)
O364	0.7289 (16)	0.0258 (8)	0.3784 (12)	0.037 (4)*	0.087 (5)
N1	0.49406 (10)	0.12534 (5)	0.07439 (9)	0.01965 (19)	
H71	0.5767 (19)	0.1274 (9)	0.1273 (17)	0.040 (5)*	
N2	0.34466 (10)	0.03182 (5)	-0.12197 (9)	0.0216 (2)	
H72	0.3224 (17)	-0.0023 (9)	-0.1669 (16)	0.033 (4)*	
N32	0.87981 (11)	0.21070 (6)	0.15093 (10)	0.0277 (2)	
N34	1.21470 (12)	0.20290 (6)	0.57125 (12)	0.0375 (3)	
C1	0.45809 (12)	0.06515 (6)	-0.12171 (11)	0.0229 (2)	
C2	0.47774 (12)	0.13264 (6)	-0.05765 (11)	0.0228 (2)	
H2A	0.5588	0.1545	-0.0645	0.027*	

H2B	0.3985	0.1613	-0.1002	0.027*
C3	0.39456 (11)	0.11469 (5)	0.11481 (10)	0.0186 (2)
C4	-0.11953 (12)	0.08838 (7)	-0.07592 (13)	0.0272 (3)
H4A	-0.1330	0.1015	0.0028	0.033*
H4B	-0.1627	0.0444	-0.1017	0.033*
C5	-0.18803 (14)	0.13922 (8)	-0.17752 (15)	0.0399 (3)
H5A	-0.1502	0.1835	-0.1498	0.060*
H5B	-0.2854	0.1397	-0.1933	0.060*
H5C	-0.1727	0.1273	-0.2549	0.060*
C11	0.24806 (11)	0.05778 (6)	-0.07911 (10)	0.0194 (2)
C12	0.26416 (11)	0.09611 (6)	0.02726 (10)	0.0198 (2)
C13	0.13619 (12)	0.10916 (6)	0.04104 (11)	0.0230 (2)
H13	0.1277	0.1342	0.1088	0.028*
C14	0.02920 (12)	0.08249 (6)	-0.05130 (11)	0.0232 (2)
C21	0.42065 (11)	0.11893 (6)	0.25106 (11)	0.0210 (2)
C22	0.50465 (12)	0.16687 (6)	0.33080 (11)	0.0243 (2)
C23	0.52897 (15)	0.16634 (8)	0.45900 (13)	0.0368 (3)
H23	0.5859	0.1992	0.5119	0.044*
C24	0.47029 (17)	0.11802 (9)	0.50923 (13)	0.0428 (4)
H24	0.4878	0.1174	0.5971	0.051*
C25	0.38611 (16)	0.07037 (8)	0.43273 (14)	0.0377 (3)
H25	0.3456	0.0373	0.4678	0.045*
C26	0.36134 (13)	0.07120 (7)	0.30489 (12)	0.0283 (3)
H26	0.3028	0.0387	0.2526	0.034*
C31	0.85448 (11)	0.12197 (6)	0.29523 (11)	0.0208 (2)
C32	0.92952 (12)	0.17741 (6)	0.27217 (11)	0.0225 (2)
C33	1.04736 (12)	0.20209 (6)	0.35838 (12)	0.0256 (2)
H33	1.0953	0.2371	0.3363	0.031*
C34	1.09452 (12)	0.17498 (6)	0.47757 (12)	0.0267 (3)
C35	1.02603 (13)	0.12448 (6)	0.51186 (12)	0.0280 (3)
H35	1.0569	0.1080	0.5955	0.034*
C36	0.91220 (12)	0.09847 (6)	0.42255 (11)	0.0244 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.03397 (16)	0.02676 (15)	0.03248 (16)	-0.01114 (12)	0.01341 (13)	-0.00916 (11)
S1	0.01661 (13)	0.02786 (15)	0.02118 (14)	-0.00278 (10)	0.00153 (10)	-0.00509 (10)
O1	0.0307 (5)	0.0438 (6)	0.0402 (5)	-0.0040 (4)	0.0204 (4)	-0.0127 (4)
O31	0.0212 (4)	0.0225 (4)	0.0289 (4)	-0.0008 (3)	-0.0038 (3)	-0.0028 (3)
O321	0.0293 (5)	0.0464 (6)	0.0305 (5)	0.0064 (4)	0.0020 (4)	0.0102 (4)
O322	0.0465 (6)	0.0593 (7)	0.0426 (6)	-0.0143 (6)	0.0155 (5)	0.0147 (5)
O341	0.0336 (6)	0.0361 (6)	0.0629 (8)	-0.0136 (5)	-0.0065 (5)	-0.0026 (5)
O342	0.0493 (7)	0.0693 (9)	0.0367 (6)	-0.0165 (6)	-0.0183 (5)	0.0039 (6)
N36	0.0317 (6)	0.0376 (6)	0.0242 (5)	-0.0089 (5)	0.0037 (4)	0.0028 (5)
O361	0.0699 (12)	0.0805 (14)	0.0235 (6)	-0.0390 (11)	0.0124 (6)	-0.0028 (7)
O362	0.0621 (11)	0.0307 (7)	0.0354 (6)	-0.0185 (7)	0.0154 (6)	-0.0032 (5)
N1	0.0162 (4)	0.0225 (5)	0.0180 (4)	-0.0010 (4)	0.0032 (4)	-0.0027 (3)

N2	0.0201 (5)	0.0224 (5)	0.0212 (5)	-0.0016 (4)	0.0061 (4)	-0.0056 (4)
N32	0.0303 (5)	0.0265 (5)	0.0250 (5)	0.0003 (4)	0.0082 (4)	0.0009 (4)
N34	0.0264 (6)	0.0322 (6)	0.0397 (7)	-0.0035 (5)	-0.0060 (5)	-0.0066 (5)
C1	0.0205 (5)	0.0290 (6)	0.0179 (5)	-0.0004 (4)	0.0052 (4)	-0.0012 (4)
C2	0.0228 (5)	0.0253 (5)	0.0201 (5)	-0.0040 (4)	0.0074 (4)	-0.0002 (4)
C3	0.0166 (5)	0.0174 (5)	0.0194 (5)	0.0000 (4)	0.0035 (4)	-0.0028 (4)
C4	0.0158 (5)	0.0295 (6)	0.0344 (6)	-0.0011 (4)	0.0065 (5)	-0.0028 (5)
C5	0.0244 (6)	0.0466 (8)	0.0456 (8)	0.0098 (6)	0.0083 (6)	0.0099 (7)
C11	0.0168 (5)	0.0203 (5)	0.0185 (5)	-0.0011 (4)	0.0030 (4)	-0.0006 (4)
C12	0.0163 (5)	0.0213 (5)	0.0199 (5)	-0.0009 (4)	0.0041 (4)	-0.0025 (4)
C13	0.0186 (5)	0.0248 (5)	0.0247 (5)	0.0001 (4)	0.0066 (4)	-0.0043 (4)
C14	0.0177 (5)	0.0242 (5)	0.0263 (6)	0.0001 (4)	0.0059 (4)	-0.0011 (4)
C21	0.0184 (5)	0.0240 (5)	0.0195 (5)	-0.0013 (4)	0.0052 (4)	-0.0040 (4)
C22	0.0218 (5)	0.0271 (6)	0.0237 (6)	-0.0050 (4)	0.0077 (4)	-0.0051 (4)
C23	0.0376 (7)	0.0466 (8)	0.0237 (6)	-0.0133 (6)	0.0077 (5)	-0.0128 (6)
C24	0.0486 (9)	0.0593 (10)	0.0206 (6)	-0.0123 (8)	0.0125 (6)	-0.0044 (6)
C25	0.0406 (8)	0.0459 (8)	0.0302 (7)	-0.0110 (6)	0.0168 (6)	0.0014 (6)
C26	0.0278 (6)	0.0305 (6)	0.0267 (6)	-0.0073 (5)	0.0099 (5)	-0.0036 (5)
C31	0.0171 (5)	0.0210 (5)	0.0218 (5)	0.0022 (4)	0.0037 (4)	-0.0029 (4)
C32	0.0212 (5)	0.0226 (5)	0.0215 (5)	0.0022 (4)	0.0049 (4)	-0.0002 (4)
C33	0.0204 (5)	0.0226 (5)	0.0317 (6)	-0.0009 (4)	0.0065 (5)	-0.0029 (5)
C34	0.0185 (5)	0.0257 (6)	0.0283 (6)	-0.0011 (4)	-0.0014 (5)	-0.0056 (5)
C35	0.0260 (6)	0.0291 (6)	0.0223 (5)	-0.0002 (5)	0.0005 (5)	-0.0009 (5)
C36	0.0227 (5)	0.0246 (6)	0.0231 (5)	-0.0023(4)	0.0044 (5)	-0.0004(4)

Geometric parameters (Å, °)

Cl1—C22	1.7337 (13)	C4—C5	1.5199 (19)
S1—C11	1.7164 (11)	C4—H4A	0.9900
S1—C14	1.7415 (12)	C4—H4B	0.9900
O1—C1	1.2102 (15)	С5—Н5А	0.9800
O31—C31	1.2590 (14)	С5—Н5В	0.9800
O321—N32	1.2234 (15)	С5—Н5С	0.9800
O322—N32	1.2277 (15)	C11—C12	1.3925 (15)
O341—N34	1.2222 (18)	C12—C13	1.4396 (15)
O342—N34	1.2273 (18)	C13—C14	1.3528 (16)
N36—O363	1.118 (12)	С13—Н13	0.9500
N36—O362	1.2196 (16)	C21—C26	1.3985 (17)
N36—O361	1.2330 (19)	C21—C22	1.4029 (16)
N36—O364	1.323 (14)	C22—C23	1.3885 (18)
N36—C36	1.4542 (16)	C23—C24	1.379 (2)
N1—C3	1.3056 (15)	С23—Н23	0.9500
N1—C2	1.4574 (15)	C24—C25	1.384 (2)
N1—H71	0.870 (19)	C24—H24	0.9500
N2—C1	1.3720 (15)	C25—C26	1.3836 (18)
N2—C11	1.3795 (15)	С25—Н25	0.9500
N2—H72	0.836 (18)	С26—Н26	0.9500
N32—C32	1.4534 (15)	C31—C36	1.4380 (16)
N34—C34	1.4519 (15)	C31—C32	1.4431 (16)

C1—C2	1.5170 (17)	C32—C33	1.3771 (16)
C2—H2A	0.9900	C33—C34	1.3803 (18)
C2—H2B	0.9900	С33—Н33	0.9500
C3—C12	1.4358 (15)	C34—C35	1.3793 (18)
C3—C21	1.4776 (15)	C35—C36	1.3745 (17)
C4—C14	1.5011 (16)	С35—Н35	0.9500
C11—S1—C14	92.26 (5)	C12—C11—S1	111.57 (8)
O363—N36—O362	107.3 (6)	C11—C12—C3	122.62 (10)
O362—N36—O361	122.68 (13)	C11—C12—C13	111.32 (10)
O363—N36—O364	124.9 (9)	C3—C12—C13	125.89 (10)
O361—N36—O364	115.2 (6)	C14—C13—C12	113.81 (10)
O363—N36—C36	120.9 (6)	C14—C13—H13	123.1
O362—N36—C36	119.46 (11)	С12—С13—Н13	123.1
O361—N36—C36	117.83 (12)	C13—C14—C4	130.33 (11)
O364—N36—C36	114.2 (6)	C13—C14—S1	111.02 (9)
C3—N1—C2	124.21 (10)	C4—C14—S1	118.55 (9)
C3—N1—H71	120.1 (12)	C26—C21—C22	117.76 (11)
C2—N1—H71	115.7 (12)	C26—C21—C3	118.24 (10)
C1—N2—C11	124.78 (10)	C22—C21—C3	123.97 (11)
C1—N2—H72	117.2 (11)	C23—C22—C21	120.93 (12)
C11—N2—H72	116.2 (11)	C23—C22—Cl1	116.52 (10)
O321—N32—O322	123.13 (12)	C21—C22—Cl1	122.52 (9)
O321—N32—C32	118.95 (11)	C24—C23—C22	119.79 (13)
O322—N32—C32	117.92 (11)	С24—С23—Н23	120.1
O341—N34—O342	123.85 (12)	С22—С23—Н23	120.1
O341—N34—C34	118.31 (12)	C23—C24—C25	120.57 (13)
O342—N34—C34	117.84 (13)	C23—C24—H24	119.7
O1—C1—N2	122.16 (12)	C25—C24—H24	119.7
O1—C1—C2	123.78 (11)	C26—C25—C24	119.56 (13)
N2—C1—C2	114.05 (10)	С26—С25—Н25	120.2
N1—C2—C1	110.59 (10)	С24—С25—Н25	120.2
N1—C2—H2A	109.5	C25—C26—C21	121.37 (12)
C1—C2—H2A	109.5	С25—С26—Н26	119.3
N1—C2—H2B	109.5	С21—С26—Н26	119.3
C1—C2—H2B	109.5	O31—C31—C36	123.67 (11)
H2A—C2—H2B	108.1	O31—C31—C32	124.57 (11)
N1—C3—C12	119.59 (10)	C36—C31—C32	111.76 (10)
N1—C3—C21	118.98 (10)	C33—C32—C31	124.39 (11)
C12—C3—C21	121.36 (10)	C33—C32—N32	116.33 (11)
C14—C4—C5	112.41 (11)	C31—C32—N32	119.27 (10)
C14—C4—H4A	109.1	C32—C33—C34	118.69 (12)
С5—С4—Н4А	109.1	С32—С33—Н33	120.7
C14—C4—H4B	109.1	С34—С33—Н33	120.7
C5—C4—H4B	109.1	C35—C34—C33	121.57 (11)
H4A—C4—H4B	107.9	C35—C34—N34	119.12 (12)
С4—С5—Н5А	109.5	C33—C34—N34	119.21 (12)
C4—C5—H5B	109.5	C36—C35—C34	118.68 (12)
Н5А—С5—Н5В	109.5	С36—С35—Н35	120.7
C4—C5—H5C	109.5	С34—С35—Н35	120.7

Н5А—С5—Н5С	109.5	C35 - C36 - C31	124 71 (11)
H5B-C5-H5C	109.5	C35-C36-N36	116 33 (11)
N_2 —C11—C12	129 56 (10)	$C_{31} - C_{36} - N_{36}$	118 94 (10)
N2—C11—S1	118.77 (8)		
C11—N2—C1—O1	-175.18 (12)	C22—C23—C24—C25	-0.7 (3)
C11—N2—C1—C2	5.61 (16)	C23—C24—C25—C26	0.3 (3)
C3—N1—C2—C1	-77.66 (14)	C24—C25—C26—C21	0.6 (2)
01—C1—C2—N1	-117.45 (13)	C22—C21—C26—C25	-1.1 (2)
N2—C1—C2—N1	61.75 (13)	C3—C21—C26—C25	177.14 (13)
C2—N1—C3—C12	12.62 (17)	O31—C31—C32—C33	-175.40 (12)
C2—N1—C3—C21	-170.29 (10)	C36—C31—C32—C33	4.22 (17)
C1—N2—C11—C12	-41.65 (19)	O31—C31—C32—N32	4.86 (18)
C1—N2—C11—S1	142.17 (10)	C36—C31—C32—N32	-175.52 (10)
C14—S1—C11—N2	177.15 (10)	O321—N32—C32—C33	-152.12 (12)
C14—S1—C11—C12	0.32 (9)	O322—N32—C32—C33	28.00 (17)
N2-C11-C12-C3	-0.8 (2)	O321—N32—C32—C31	27.64 (17)
S1—C11—C12—C3	175.59 (9)	O322—N32—C32—C31	-152.24 (12)
N2-C11-C12-C13	-176.29 (12)	C31—C32—C33—C34	-3.70 (19)
S1-C11-C12-C13	0.10 (13)	N32—C32—C33—C34	176.05 (11)
N1—C3—C12—C11	32.88 (17)	C32—C33—C34—C35	-0.45 (19)
C21—C3—C12—C11	-144.13 (12)	C32—C33—C34—N34	-176.78 (12)
N1—C3—C12—C13	-152.30 (12)	O341—N34—C34—C35	-178.51 (13)
C21—C3—C12—C13	30.68 (18)	O342—N34—C34—C35	1.4 (2)
C11—C12—C13—C14	-0.65 (15)	O341—N34—C34—C33	-2.1 (2)
C3—C12—C13—C14	-175.96 (11)	O342—N34—C34—C33	177.82 (14)
C12—C13—C14—C4	-175.42 (12)	C33—C34—C35—C36	3.5 (2)
C12—C13—C14—S1	0.88 (14)	N34—C34—C35—C36	179.86 (12)
C5-C4-C14-C13	99.93 (17)	C34—C35—C36—C31	-2.8 (2)
C5-C4-C14-S1	-76.14 (14)	C34—C35—C36—N36	178.98 (12)
C11—S1—C14—C13	-0.69 (10)	O31—C31—C36—C35	178.71 (12)
C11—S1—C14—C4	176.10 (10)	C32—C31—C36—C35	-0.92 (17)
N1—C3—C21—C26	-138.62 (12)	O31-C31-C36-N36	-3.08 (18)
C12—C3—C21—C26	38.41 (16)	C32—C31—C36—N36	177.29 (11)
N1—C3—C21—C22	39.47 (17)	O363—N36—C36—C35	-7.5 (9)
C12—C3—C21—C22	-143.50 (12)	O362—N36—C36—C35	-144.83 (16)
C26—C21—C22—C23	0.68 (19)	O361—N36—C36—C35	33.3 (2)
C3—C21—C22—C23	-177.42 (12)	O364—N36—C36—C35	173.3 (8)
C26—C21—C22—Cl1	-177.61 (10)	O363—N36—C36—C31	174.1 (8)
C3—C21—C22—Cl1	4.29 (17)	O362—N36—C36—C31	36.8 (2)
C21—C22—C23—C24	0.2 (2)	O361—N36—C36—C31	-145.06 (19)
Cl1—C22—C23—C24	178.56 (13)	O364—N36—C36—C31	-5.1 (9)
Hydrogen-bond geometry (Å, °)			

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H71…O31	0.870 (19)	1.865 (19)	2.6847 (13)	156.3 (17)
N2—H72···O31 ⁱ	0.836 (18)	2.047 (18)	2.8331 (13)	156.4 (16)
N2—H72···O362 ⁱ	0.836 (18)	2.400 (17)	2.9495 (16)	123.9 (14)

С2—Н2А…О321	0.99	2.49	3.2465 (16)	133.
C2—H2B···O342 ⁱⁱ	0.99	2.48	3.2505 (17)	134.
C23—H23····O321 ⁱⁱⁱ	0.95	2.51	3.4193 (18)	161.
Symmetry codes: (i) $-x+1$, $-y$, $-z$; (ii) $x-1$, y , $z-1$; (iii) x , $-y+1/2$, $z+1/2$.				

Fig. 1

